MIDTERM 1 STUDY GUIDE

PEYAM RYAN TABRIZIAN

Midterm 1 takes place on Friday, July 1st, at 11:10 am in our usual classroom. However, come early, because we might get started earlier than 11:10 am (to give you extra time) and because we might move to the room next to ours (289 Cory), to give you extra space. The midterm counts for 20% of your grade, and covers sections $1.1,1.3,1.5,1.6$, $2.2,2.3,2.5$, and 2.6 . This is the study guide for the exam, and contains everything you'll need to know for the exam. It has a lot of problems, but that's mainly to give you extra practice in case you need it, so you don't have to do all of them. The material in bold I feel is more important than the rest, so make sure to spend more time on those ones than on the others.

Note: Make sure to do exercises 65, 66, and 67 in section 1.6, because you are guaranteed to have a similar problem on the exam!

Note: 1.3.4 means 'Problem 4 in section 1.3'

Know how to:

1. Chapter 1: Functions and Models

- Determine whether a given graph is the graph of a function (1.1.5, 1.1.6)
- Given the graph of a function, determine its domain and range (1.1.6, 1.1.7)
- Find the domain of a function, given a formula (1.1.27, 1.1.28, 1.1.30, 1.1.32, $1.5 .15,1.5 .16,1.6 .53(a))$
- Determine whether a function is even, odd, or neither, given a formula (1.1.65, 1.1.66, 1.1.69)
- Explain how to obtain a new function from a given function (1.3.10, 1.3.11, $1.3 .13,1.3 .15,1.3 .18,1.5 .7,1.5 .9,1.5 .11,1.6 .45$, as well as $y=\cos (2 x+3)$, $\left.y=1-2 x^{2}, y=\tan (-x+1)\right)$
Note: On the exam, I will not ask you to actually graph the new function (in order to save you time), so a typical question might be: 'Explain in words how to obtain the graph of $y=2 x^{2}+1$ from the graph of $y=x^{2}$. And remember that for vertical transformations, the shift comes last, and for horizontal transformations, the shift comes first.
- Given f and g, find composition of functions, i.e. $f \circ g, g \circ f, f \circ f$, etc. (1.3.31, 1.1.33, 1.3.36)
- Given f, g, h, find $f \circ g \circ h(1.3 .37,1.3 .39,1.3 .40)$
- Express a function in the form $f \circ g(1.3 .41,1.3 .42,1.3 .45,1.3 .46)$
- Given a graph, determine whether a function is one-to-one (1.6.5, 1.6.6)
- Given a formula, determine whether a function is one-to-one (1.6.10, 1.6.11, 1.6.12)

[^0]- Find the formula for the inverse of a function (1.6.21, 1.6.23, 1.6.24, 1.6.25)
- Solve equations and inequalities involving e^{x} and $\ln (x)$ (1.6.47, 1.6.48, 1.6.51, 1.6.52)
- Simplify expressions involving inverse trig functions, using the triangle method (1.6.65, 1.6.66, 1.6.67)

Note: You can also solve those problems using formulas like $\cos ^{2}(x)+\sin ^{2}(x)=$ 1 and $1+\tan ^{2}(x)=\sec ^{2}(x)$, but you'd have to justify why your final answer is positive. Also, make sure to show your steps!

2. Chapter 2: Limits and Derivatives

- Given a graph, find a given limit if it exists or explain why it does not exist. Also, find the vertical asymptotes. (2.2.4, 2.2.5, 2.2.6, 2.2.7, 2.2.8, 2.2.9)
- Find limits of a function:
- Step 1: Just by plugging in (2.3.3, 2.3.6, 2.3.9)
- Step 2: By noticing that it's of the form $\frac{1}{0^{+}}=\infty$ or $\frac{1}{0^{-}}=-\infty(2.2 .25$, 2.2.28, 2.2.29)
- Step 3: By factoring out the numerator and the denominator and simplifying (2.3.12, 2.3.13, 2.3.14, 2.3.15, 2.3.16, 2.3.17, 2.3.26)
- Step 4: Whenever there is a square root, by multiplying numerator and denominator by the conjugate form (2.3.21, 2.3.23, 2.3.29, 2.3.30, 2.3.60)
- Step 5: By using the squeeze theorem (2.3.35, 2.3.37, 2.3.38)
- Step 6: By calculating $\lim _{x \rightarrow a^{-}}$and $\lim _{x \rightarrow a^{+}}$and by noticing that they're equal or not ($2.3 .39,2.3 .40,2.3 .42,2.3 .46$ (a)(b), 2.3.47(a)(b))
Note: If you need more practice, try the following set of problems: 2.3.22, 2.3.8, 2.3.11, 2.3.12, 2.3.36
- Given a graph, say where a function is continuous, and state the types of discontinuities (2.5.3, 2.5.4)
- Given a formula, say where a function is continuous (2.5.27, 2.5.37, 2.5.39)
- Evaluate limits using continuity ($2.5 .33,2.5 .34 .2 .6 .34,2.6 .36$)
- Use the intermediate value theorem to show that a given equation has at least one solution (2.5.47, 2.5.48, 2.5.49, 2.5.51(a), 2.5.52(a))
Note: Make sure to show your steps and use the words 'continuous' and 'IVT'. Also, I might not give you any intervals, sometimes you'd have to guess it!
- Given a graph, find limits at ∞ as well as equations of the horizontal asymptotes (2.6.3, 2.6.4)
- Find limits at infinity of a function:
- Step 1: Just by plugging in $(2.6 .15,2.6 .30)$
- Step 2: By factoring out the highest power out of an expression (2.6.31)
- Step 3: By factoring out the highest power of the numerator and the denominator (2.6.16, 2.6.17, 2.6.19, 2.6.21, 2.6.33)
- Step 4: By factoring out the highest power of x out of a square root (2.6.22, 2.6.23, 2.6.24, also try those out with $-\infty$ replacing ∞, and vice-versa) Note: Remember that $\sqrt{x^{2}}=|x|=x$ (if $x>0$) and $=-x$ (if $x<0$)
- Step 5: By using the conjugate form, making sure to do Step 4 first (2.6.25, 2.6.26, 2.6.27)
- Step 6: By using the squeeze theorem (2.6.35, 2.6.53(a), 2.6.57)

Note: If you need more practice, try the following set of problems: 2.6.30, 2.6.29, 2.6.20, 2.6.37(c)

[^0]: Date: Friday, June 24th, 2011.

